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SUMMARY. Two approaches are described for estimating the prevalence of a disease that may have de- 
veloped in a previous restricted age interval among persons of a given age at a particular calendar time. 
The prevalence for all those who ever developed disease is treated as a special case. The counting method 
(CM) obtains estimates of prevalence by dividing the estimated number of diseased persons by the total 
population size, taking loss to follow-up into account. The transition rate method (TRM) uses estimates of 
transition rates and competing risk calculations to estimate prevalence. Variance calculations are described 
for CM and TRM as well as for a variant of CM, called counting method times 10 (CMlO), that is designed 
to yield more precise estimates than CM. We compare these three estimators in terms of precision and in 
terms of the underlying assumptions required to justify the methods. CM makes fewer assumptions but is 
typically less precise than TRM or CMlO. For common diseases such as breast cancer, CM may be preferred 
because its precision is excellent even though not as high as for TRM or CM10. For less common diseases, 
such as brain cancer, however, TRM or CMlO and other methods that make stabilizing assumptions may 
be preferred to CM. 

KEY WORDS: Bias of prevalence estimate; Cancer registry; Chronic disease prevalence; Lexis diagram; 
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1. Introduction 
We describe two approaches to using registry data to esti- 
mate age- and time-specific disease prevalence, x ( q ,  c2, a,  s ) ,  
namely the probability that an individual who is alive at cal- 
endar time s and is in the age range [a,a + l) had disease 
incident in the age interval [q, CZ), with c2 5 a. The quantity 
~ ( 0 ,  a ,  a ,  s) is the age-specific point prevalence of disease at 
time s ,  including all persons who ever developed disease since 
birth. 

One approach, the counting method (CM), estimates the 
number of disease survivors in the population (Feldman et al., 
1986). A Lexis diagram is helpful in understanding the CM 
(Figure 1). Consider subjects who are in the age range [a, a + 
1) = [50,51) on s = January 1, 1990, and whose cancers were 
incident in the age interval [q, c2) = [44,46). These subjects' 
cancers must have arisen in the parallelogram-shaped region 

of calendar time t and age z shown in Figure 1. Subject 1 
died at age 48 and does not contribute to prevalence at s 
= January 1, 1990. Subject 2 did survive and was counted. 
Subject 3 was alive when lost to follow-up at age 47, but one 
can estimate the chance that this subject survived to date s. 
The CM counts all subjects like subject 2 who are known to 
have survived to s and adds an estimate of the number of 
survivors among those who, like subject 3, were alive when 
lost to follow-up before s .  

A second approach is to use data from disease registries 
to estimate the various intensity (hazard or transition rate) 
functions that determine point prevalence. As described by 
Keiding (1991), a person at calendar time t in the healthy 
state H may transit to the chronic disease state (e .g . ,  cancer), 
I ,  with intensity a(t, z) that may depend on calendar time t 
or age z. Alternatively, the individual may die (state D )  with 
intensity p(t ,  z) directly from state H .  A person in state I is 
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Figure 1. Lexis diagram depicting events in the plane de- 
fined by calendar date, t ,  and age, 5. The parallelogram de- 
fines the region of cancer incidence for subjects who would 
be age [50,51) at calendar time t = s = 1990 if they survive 
and who are ages [44,46) at cancer incidence. The z symbol 
indicates the death of subject 1 at age 48. The solid line for 
subject 3 terminates at age 47, when he is lost to follow-up, 
and the dotted line indicates his trajectory if he continues to 
survive to t = s = 1990. 

at risk of death with intensity X ( t ,  x ,  d ) ,  which may depend on 
duration d in state I as well as on t and x .  These intensities 
determine the prevalence of the chronic disease if one assumes 
that the numbers of births at calendar time t is governed by 
a process with intensity p(t) that is independent of the sub- 
sequent life histories (Keiding, 1991). We call methods based 
on modeling the intensities transition rate methods (TRM). 
In this paper, we make the simplifying assumptions for TRM 
calculations that a( t , x )  = a(.) and p( t ,x )  = p(z )  depend 
only on age and that X ( t ,  x ,  d )  = X(x, d )  depends only on age 
and duration with cancer, though these assumptions could be 
relaxed to allow dependence on calendar time. 

The purpose of this paper is to define and compare CM 
and TRM approaches to estimating prevalence and to present 
corresponding variance estimates. 

2. Methods 
2.1 Prevalence Estimation 
Counting method estimates. Define n* ( x ,  t)dtdx to be the 
number of individuals who are at risk of first developing 
cancer at calendar time [t,t + d t )  and age [x ,x  + dx) and 
let N(a,t)  be the number alive in the population at time t in 
the age range [a, a + 1). Finally, let 

be the probability that a person who develops cancer at age 
x and date t will survive beyond duration d after cancer 
incidence. Then the desired quantity 

7r(c1,c2,a,s) 

= N(a, s)-' I" R . * ( X , S  - 2, + x )a ( s  - v , x )  

x S(V - X ;  X ;  s - 2,)dzdU. (2) 

To define CM, let X, be the exact age at cancer incidence 
for the ith member of a cancer registry and let Ta be the 
exact calendar time of cancer incidence for that member. Let 
Y,  be the exact time of death and U, be the exact time of loss 
to follow-up, which is observed if the patient is alive when 
last followed. We only get to observe the minimum of Y, 
and U,. Let s be the exact calendar date (e.g., January 1, 
1990) when prevalence is to be estimated and let I ( . )  be an 
indicator function equaling unity when the argument is true 
and zero otherwise. Then the counting method estimate of 
~ ( c i , c 2 , a , s )  is 

*CM(cl,c2ra,s) 

= [CI(Cl I x, < c2,K 2 s, u, L s, 

where summations are over all members in the registry and 
S ( d ; z ; t )  is an estimate of S(d ;x ; t ) .  The first summation in 
equation (3) represents cancer cases known to have survived 
to age a, such as subject 2 in Figure 1, and the second term 
corresponds to cancer cases who were lost to follow-up before 
age a, such as subject 3 in Figure 1. 

The random variables X,, T,, Y,, and U, are continuous. 
In registry data, their values are often truncated to integers. 
For example, cancers incident in the age range [ j , ~  + 1) are 
recorded as age j ,  where j is an integer. In such cases, we take 
the exact value to be the midpoint of the range of possible 
values. In the previous example, we would set X ,  = j + 0.5. 

Estimates S(d; x; t )  are obtained by actuarial methods 
(Cutler and Ederer, 1958) based on follow-up studies of 
patients detected in the U.S. Surveillance, Epidemiology, and 
End Results (SEER) Registry with cancer incident between 
1980 and 1989 and with c1 5 X ,  < c2 and a I X ,  f s - T, < 
a + 1. Because we were only concerned with ages 550, for 
which S(d; z; t )  depends little on age, all age groups were 
combined to produce survival curves S ( d ;  .; t )  that depended 
on the date of diagnosis but not on age. The curve S ( d ;  ,; t )  
was estimated by grouping all individuals whose dates of 
diagnosis were in the calendar intervals [1980,1981), [1981- 
1985), and [1985,1990). Population sizes were based on 1990 
census data. 

For uncommon cancers, the estimate *jTCM(c1, c2, a, s) may 
be based on only a small number of incident cases. For 
example, if a1 = 50, s = 1990, c1 = 44, and c2 = 46, as in 
Figure 1, only cases incident at ages [44,46) and born in the 
interval [1990 - 51,1990 - 50) = [1939,1940) are included. as 
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indicated in the parallelogram. The area of this parallelogram 
is two (in units of years squared). Suppose instead that 
all cases that arise in the calendar interval [1980,1990) are 
included, provided cancer is incident at ages [44,46). The area 
of the rectangle bounded by the points (1980,44), (1990,44), 
(1990,46), (1980,46) is 20. Thus, approximately 20/2 = 10- 
fold more cases are counted. By counting cases such as 
individual 4 (Figure 1) who had cancer incident at age 
X i  = 45 at time Ti = 1987, we are assuming that this 
case behaves as if he were born in [1939,1940) instead of at 
Ti - X i  = 1987 - 45 = 1942. We assign a fictitious birth date 
of 1939.5 to each person falling outside the parallelogram or, 
equivalently, we assign a fictitious date of cancer incidence 
of T,' = X i  + (s - a - 0.5). The calendar time of death and 
time lost to follow-up are shifted by the same amount, so that 
y,' = Y,  + (T,' - Ti) and U,' = Ui + (T: - Ti). Then this 
larger number of cases is analyzed according to equation (3) 
with T:, x+, and U: replacing Ti, Y,, and Ui, respectively. 
Because this calculation includes 10 times as many cases as 
the calculation based only on cases who would have been 
exactly age [a, u+1) at calendar time s if they survived, we call 
this method the counting method times 10 (CMlO) method 
and the corresponding estimate is denoted ? c M ~ o ( c ~ ,  c2, a,  s). 
However many of these cases will be censored. For example, 
with a = 50, s = 1990, and registry information through 1992, 
a person aged 45 at diagnosis at Ti = 1989 will be assigned a 
fictitious date of diagnosis T,' = 1990 - 50.5 + 45 = 1984.5, 
but follow-up will end after 1992 - 1989 = 3 years (see subject 
5 in Figure 1). To estimate S(d; x;  t )  for use with the CM10, we 
performed actuarial calculations on all subjects with cancer 
incident in 1980-1989 who satisfied c1 5 X i  < c2. 

To estimate the prevalence among all individuals who are 
less than a years old at calendar time s and whose disease 
developed in the time interval [s - L , s ) ,  we compute the 
weighted average 

K C M  ( a ,  L )  
a-1 

= C + C M ( i  - L ,  i ,  i ,  s )N( i ,  s ) / ~ ( + ,  s) 

= [ C I ( ~  - L 5 T, < s, y~ 2 s, ui 2 s, xi + s - T~ < a )  

i=O 

+ C { I ( S  - L 5 Ti < s , Y ,  > Ui,  Ui < S, 
Xi + s - Ti < u) }  

x { S(S - Ti; X i ;  Ti) /S(Ui  - Ti; X i ,  T i ) } ]  / N ( + ,  s), 

(4) 
where N(+,s )  = C : z t  N(i,s) is the size at time s of the 
population age < a.  

In the examples (Section 3 ) ,  we set s = January 1,1990, and 
L = 10, so that SEER cases incident from January 1, 1980, to 
December 31, 1989, are used for % j r ~ ~ 1 0  and for k c ~ ( 5 0 , l O ) .  

Ransition rate estimates. Suppose the transition intensities 
defined in Section 1 are independent of date of birth, so that 
they are described by p(x ) ,  ( ~ ( x ) ,  and X(z,d). The quantity 
S(d ;x )  is obtained from equation (1) by suppressing t .  Let 
Sc(a)  = exp(- Jt a(z)dx) ,  S d ( a )  = exp(- Jt p(x)dz),  and 
S*(a)  be the probability of surviving to age a in the general 
population. Then the probability that a member of this popu- 

lation would develop cancer in [ C I , C ~ )  and survive to age 
a + 0.5 is 

~ T R M  (ci, c2, a,  s) 

= { S*(a + 0.5)}-l 

S,~ (Z )S~(Z )Q(Z)S(U  + 0.5 - 2;  x)dx. ( 5 )  l: 
Keiding (1991) gives an equivalent expression for prevalence 
odds except that we restrict cancer incidence to the age 
interval [ci, c2) (see also Capocaccia and De Angelis [1997]). 
Equation (5) equals equation (2) if the integrand in equation 
(2) is linear on the small interval [a, a + 1) and if there are no 
secular trends and no immigration or emigration. 

To estimate S*(s) for the examples in Section 3, we use 
U.S. national age-, sex-, and race-specific mortality rates for 
all causes of death based on the calendar period 1980-1989. 
We estimate the race and gender distribution of the SEER 
population as the average of the distributions from the 1980 
and 1990 censuses. From overall U.S. national mortality rates 
p l (a )  for the ith race and gender group, we compute the 
corresponding survival curve ST (u). Then S* ( a )  is a weighted 
average S*(a)  = EifiS,'(u), where fi is the proportion of 
the SEER population in race and gender group i. For breast 
cancer, i only ranges over race. We compute S,j(a) exactly 
as for S*(a ) ;  however, instead of using the overall mortality 
rates p i (a ) ,  we set pi(a) equal to the mortality rate from all 
causes of death except the cause of interest. 

The estimated prevalence ?jrTRM(C1, c2, a, s) is obtained 
from equation (5) using &(x) ,  Sc(z),  and X(x,d) and with 
Sd(a) and S*(a)  assumed known without error. Estimators 
h(z) and i ( z ;  d)  are described in the Appendix. 

To estimate the prevalence among those less than age 
a using the TRM method, we replace ? ~ T c M ( c ~ , c ~ , ~ , s )  by 
? ~ ~ T R M ( c ~ ,  c2, a,  s) in the first line to the right of th,e equal sign 
in equation (4). We call the resulting estimator K v p ~ ~ ( a ,  L ) .  

2.2 Variance Estimation 
Counting method. If individuals have independent small 
probabilities of cancer incidence or if the birth process feeding 
the three-state transition model is Poisson and subsequent 
times to cancer incidence are independent of the times of birth 
and of each other, then the number of cancers incident in a 
region of the (2, t )  plane in Figure 1 is Poisson (Haberman, 
1978; Brillinger, 1986; Keiding, 1991) and the number of such 
cases who survive to a subsequent age interval [a,a + 1) 
is also Poisson. Therefore, if there were no loss to follow- 
up and if the first summation in equation (3) counted M 
cases, the variance of ?jrCM(Cl, c2, a,  s) would be estimated 
as h f { N ( a , ~ ) } - ~ .  In the presence of loss to follow-up, the 
variance calculation- is complicated pecause the estimated 
weighting function, S(s  - Ti; X i ;  Ti)/S(Ui - Ti; X i ;  Ti), takes 
different values depending on when individuals are lost to 
follow-up. We propose a bootstrap procedure to estimate one 
component ofAthe variance. The estjmate ?CM can be written 
as ?CM = M&/N(a ,  s ) ,  where MEM is the numerator in the 
right-hand side of equation ( 3 ) .  Here M is the number of cases 
incident in the age range [cl, c2) who would be age [a, a + 1) 
at calendar time s if they survive and <M is the estimated 
proportion of such cases who were alive at calendar time s. 
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As M increases, &,l converges to  E ,  say, and M var(iM) tends 
to the limiting variance c2. It follows that 

This variance can be estimated by substituting ( M  for ( and 
by estimating o2 from the following bootstrap procedure. Fix 
m and, for b = 1,2, .  . . , B = 100, choose a random sample 
of size m from the original A4 cases with replacement. From 
bootstrap sample b, compute imb. The sample variance s2 of 
the quantities im,* estimates u2/m. Hence, we can estimate 
u2 in equation (6) from s2m. In our calculations, we set 
m = 500, but quantitatively similar estimates were obtained 
for m = 1000, confirming that m = 500 sufficed. 

Now consider the quantity K ~ M ( u ,  L )  given by equation 
(4). We can write l ? j r ~ ~ ( a , L )  = {hf/N(+,s)}i~, where 
M cases were incident at ages < a and where i~ is the 
proportion of those A 4  cases who survived to some age a’ 5 a 
at calendar time s and whose cancer was incident in the 
interval [a’ - L ,  a’) for those attaining age a’ at calendar time 
s. From calculations like those yielding equation (6), we find 
that var{l?jrCM(a,L)) can be estimated from equation (6) 
with the following changes: N(+, s )  replaces N ( a ,  s); E now 
refers to the limiting proportion above and u2 refers to the 
variance of the modified proportion i ~ .  The quantity u2 is 
estimated by a bootstrap with sample sizes m as for . i r j r ~ ~ .  

Finally, consider ejrCM10. To be specific, we treat the case 
a = 50, s = 1990 in Table 1. This method includes all cases 
incident at age [40,50) in [1980,1990) as described in Section 
2.1. w e  can write kcM10 = M& (10 x N ( a , s ) } - l ,  where 
now M is the number of cases that arise at ages [40,49) in 
[1980,1990) and (n/r is the estimated proportion of those cases 
who survive to age a = 50. The variance of i?jrCM10 is estimated 
from equation (6) with the following changes: 10 x N ( a , s )  
replaces N ( a , s ) ,  the new definition of E applies, and u2 is 
estimated by bootstrap resampling of m cases and computing 
the newly defined .& on each bootstrap replication. 
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Transition rate method. The estimator . i r j r ~ ~ ~  based on 
equation (5) depends on S ( d ; x ) ,  &(x), and its associated 
survival function Sc. Other functions in equation (6) are 
assumed to be known without error. Assuming that Sc and S 
have piecewise constant hazards, we apply the delta method 
(Rao, 1975, pp. 385-389) to obtain the variance of ~ T R M  and 
of weighted averages such as ~ T R M  (see Appendix). 

3. Results 
We illustrate these methods on two cancers with very different 
incidence and survival rates. Breast cancer was selected 
because the survival distribution following breast cancer 
incidence is relatively favorable and because incidence rates 
are relatively high. The age-specific breast cancer incidence 
rates per lo5 person-years in SEER from 1980 to 1989 were 
27 for women age 30-34 and 394 for women age 70-74. 
Brain cancer was selected because the survival distribution 
is relatively unfavorable and the incidence rate is low (3.3 
per lo5 person-years in the age range 30-34 and 20.2 per 
lo5 person-years in the age range 70-74). Both on grounds of 
incidence rates and survival rates, we expect the prevalence 
of brain cancer to be much smaller than that of breast cancer. 

Table 1 presents data needed to estimate prevalences and 
their standard errors by CM or CMlO for breast and brain 
cancers that developed in the previous 10 years. Prevalences 
at age 50 and for persons less than 50 years old are considered. 
For example, the CM estimate of the prevalence of breast 
cancer at age 50, 1473/120,543 = 1222 x lop5, is obtained by 
dividing the estimated number of survivors by the population 
size. Note the small numbers of brain cancers incident among 
subjects age 50. The bootstrap estimate of o2 is given so that 
the variances can be calculated from equation (6). 

The CM estimate of the prevalence of breast cancer incident 
in the previous 10 years for 50-year-old women is 1222 per 
lo5 women, or about 1.2% (Table 2).  The estimated standard 
error, 31.2, corresponds to a coefficient of variation of 2.6%. 
The CMlO and TRM methods yield similar estimates, namely 
1194 and 1205, respectively, but the standard errors of the 
latter two estimates are only 10.7 and 10.2, corresponding to 
coefficients of variation of only 0.9 and 0.9%, respectively. 

The CM and TRM methods yield estimates of prevalence 
in women age <50 of 179 and 183, respectively, with cor- 
responding standard errors 1.44 and 1.29 and corresponding 

Table 1 
Data fo r  breast and brain cancer 

Cancer and Size of population Number incident Estimated number Estimate 
procedure N ( a ,  s) cancers, M surviving” to a of u2 

Breast 
50, CM 120,543 1,754 
50, CM10 1,205,430 17,927 
<50, CM 8,805,357 19,137 

Brain 
50, CM 237,564 122 
50, CMlO 2,375,637 1,427 
<50, CM 17,738,126 4,805 

1473 
14,391 
15,765 

0.103 
0.288 
0.156 

41.8 0.371 
533.5 0.446 

2,875 0.259 

a This quantity is N ( a ,  S)?CM, N ( a ,  S ) ? C M ~ O ,  or N ( a ,  s ) k ~ ~ ,  depending on the entry. 
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Table 2 
Estimated prevalence (per lo5 subjects) of breast 

and brain cancers incident in the previous 
10 years (with estimated standard error)” 

Estimation procedure 

Age group” CM CMlO TRM 

Breast 
50 1222 (31.2) 1194 (10.7) 1205 (10.2) 
<50 179 (1.44) 183 (1.29) 

50 17.6 (3.25) 22.5 (1.22) 21.7 (1.03) 
< 50 16.2 (0.307) 16.4 (0.301) 

Brain 

a For the CM method, the age group 50 is 50 years old on Jan- 
uary 1, 1990, and the age group <50 is less than 50 years old on 
that date. 

coefficients of variation 0.8 and 0.7%. The variability of CM 
estimates is reduced by the averaging process in equation (4) 
compared to estimates for a single year of age. 

Estimates of the prevalence of brain cancer incident in the 
previous 10 years for persons age 50 were 17.6, 22.5, and 21.7, 
respectively, for the CM, CM10, and TRM methods. These 
numbers are sixfold smaller than for breast cancer. The re- 
spective standard errors were 3.25, 1.22, and 1.03, correspond- 
ing to coefficients of variation of 18.5, 5.4, and 4.8%. These 
coefficients of variation are much higher than for breast can- 
cer, reflecting the smaller number of incident brain tumors. 
For people age <50, the brain cancer prevalence rates for cases 
incident within the previous 10 years were estimated as 16.2 
and 16.4, respectively, for the CM and TRM methods; the re- 
spective standard errors were 0.307 and 0.301, and coefficients 
of variation were 1.9 and 1.8%. The prevalence estimates are 

11-fold smaller than for breast cancer, but the coefficients of 
variation are more than twice as large. 

Estimates of prevalence from CM, CM10, and TRM meth- 
ods agreed well except perhaps for brain cancer at age 50 
(Table 2). In Section 4, we discuss differences in assumptions 
underlying these methods that could contribute to such dis- 
crepancies. 

4. Discussion 
This paper presents three procedures for estimating preva- 
lence: the CM, CM10, and TRM methods. We also develop 
methods to estimate the variances of these prevalence esti- 
mates. In particular, the variance of i ? j r ~ ~ ~  is estimated from 
the delta method (Appendix), while the variances of ~ C M  and 
f?jrCM10 are obtained from the decomposition in equation (6), 
one term of which is estimated by a bootstrap procedure. 

Standard counting process approaches (Aalen and Johan- 
sen, 1978; Anderson et al., 1993, Section IV.4) are not ap- 
plicable because X depends on age and duration with disease 
(see Anderson et al., 1993, pp. 678-681) and because survival 
information has been grouped into actuarial intervals. 

Somnier, Keiding, and Paulson (1991) estimated prevalence 
from a TRM-type calculation. The specific assumptions used 
to model and estimate various transition rates differed from 
the assumptions used in this paper, however, and no variance 
estimates were given. Wun, Merrill, and Feuer (1998) present 
recursive life table methods for estimating prevalence. Capoc- 
accia and De Angelis (1997) present TRM calculations similar 
to equation (5) and allow for cures and for an incomplete reg- 
istry coverage period. None of these papers discusses variance 
calculations. Verdecchia et al. (1989) develop TRM-like meth- 
ods to estimate both the incidence rate (Y and the prevalence 
from data on cause- and age-specific mortality. They assume 
that the overall death rates p and X are known as well as the 
death rate from the specific cause of interest, such as breast 
cancer, following onset of that disease. This approach can 

Table 3 
Key assumptions 

CM CMlO TRM 

General 1. Registry covers all 
incident cases 

2. Persons with cancer 
who were alive when 
lost to follow-up have 
the same survival as 
others who were not 
lost to follow-up 

1. Same as for CM 1. Same as for CM 

2. All subjects with 2. Intensities p, a ,  and X 
cancer incident in the 
10-year time frame have 
the same intensities p, Q, 
and X as subjects born 
at s - a - 0.5; thus, there 
are no birth cohort 
effects in the cor- 
responding range of 
birth dates 

are independent of date 
of birth for the range of 
birth dates used to 
estimate these 
quantities 

Additional 1. S and X depend only 1. S and X depend only 
assumptions used on time since cancer on time since cancer 
in the examples incidence, d, and date incidence, d 

of cancer incidence, t 

3. There is no 
immigration or 
emigration 

1. S and X depend only 
on time since cancer 
incidence, d, and age at 
cancer incidence, x 
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therefore be used when a cancer incidence registry is not avail- 
able, but the analysis depends heavily on the model and on 
the ability to accurately assign causes of death. Alho (1992) 
discusses the impact of secular growth in the population on 
relations between incidence, prevalence, and duration. 

Variance calculations in this paper indicate that the coef- 
ficients of variation are small for breast cancer and, even for 
a rare tumor like brain cancer, the coefficients of variation 
are modest. These data suggest that coefficients of variation 
can be reduced appreciably for rare tumors, like brain can- 
cer, by relying on the CMlO or TRM estimates of prevalence 
rather than on the CM estimate. For cancers with higher inci- 
dence rates, such as breast cancer, the variances of the CMlO 
and TRM estimates will also be smaller than the variance of 
the CM estimate, but the absolute difference in coefficients of 
variation will be small. 

In many situations, therefore, the choice among these es- 
timators should depend not so much on precision as on an 
assessment of possible systematic error. In these examples, 
the CM makes fewer assumptions than the CMlO and TRM 
methods and is therefore less subject to systematic bias (Ta- 
ble 3). Apart from requirements for completeness of coverage 
of incident cancers and representative follow-up, CM makes 
few assumptions. Indeed, if there is no loss to follow-up, CM 
is nonparametric. Moreover, even assumptions on S and X are 
less critical for CM and CMlO than for TRM because S is only 
used to compensate for loss to follow-up in the CM and there 
is relatively little loss to follow-up in these examples (9.2% 
for breast cancers and 10.8% for brain cancers). The CMlO 
makes the additional assumption that age at birth does not 
alter p,  a,  and X within the range of birth dates covered in 
the 10-year calendar interval. TRM also requires that there 
be no birth cohort effects over the range of dates of birth 
used to  estimate p, a ,  and A. In addition, TRM assumes no 
immigration into or emigration from the hypothetical birth 
cohort born at s - a - 0.5. In the examples, we assumed that 
S and X depended on the time interval since cancer incidence 
and on age at cancer incidence for TRM. It is important to 
model S correctly for the TRM because S plays an influen- 
tial role in equation (5). These considerations suggest that, if 
one is interested in the prevalence of a common cancer on a 
given date, such as January 1, 1990, one can rely on the CM 
method to give estimates that take secular trends in a and p 
into account implicitly and thus avoid bias without imposing 
a great loss of precision. For rare tumors, however, estimators 
like %CM10 and +TRM may be preferred to improve precision. 

All these methods are subject to increased potential for 
systematic errors for estimating the prevalence of cancers in 
persons diagnosed more than 10 years earlier as, e.g., in esti- 
mating the lifetime prevalence, n(0,50,50, 1990), as discussed 
by Capocaccia and De Angelis (1997). 
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R ~ S U M ~  
Deux approches sont dkcrites pour estimer la prevalence d’une 
maladie B un $ge donnk pour une Bpoque donnee parmi les 

sujets ayant dkveloppk la maladie dans une tranche d’8ge 
dklimitke antkrieure. La prkvalence parmi ceux n’ayant pas 
dkveloppe antkrieurement la maladie est traitee comme un 
cas particulier. La methode de comptage (CM) fournit une 
estimation de la prevalence en divisant le nombre de malades 
par l’effectif de la population en prenant compte les perdus 
de vue. La mkthode des taux de transition (MTT) utilise 
une estimation des tam de transition et la prise en compte 
des risques compktitifs pour estimer la prevalence de la mal- 
adie. Le calcul de la variance est dkcrit pour chacune des 
methodes CM et MTT et pour une variante, appelee CM 10, 
de la methode CM qui conduit h des estimations plus prkcises. 
Les trois mkthodes sont comparkes du point de vue de leur 
precision et des hypothkses sous-jacentes necessaires B leur ap- 
plication. La mkthode CM exige moins d’hypothkses, mais elle 
est moins prkcise que les methodes MTT et CM 10. Pour des 
maladies frequentes cornme le cancer du sein, on peut prkfkrer 
la methode CM qui conduit h une bonne prkcision, m6me 
si elle est moins klevee que pour les deux autres mkthodes. 
Cependant pour les maladies plus rares, comme les tumeurs 
ckrkbrales, les mkthodes MTT et CM 10 sont prkfkrables B la 
methode CM. 
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APPENDIX 

Calculating TRM Prevalence and Its Variance 

To estimate a(%) ,  Sc(z), and X(z,d) for cancers diagnosed up 
to 10 years before 1990, we used SEER incidence data and 
data on survival following cancer from the years 1980 to 1989 
inclusive. To estimate a(z ) ,  we define age intervals i = 1,2, .  . . 
corresponding to ages [0,5), [5-lo), . . . . The estimate of a(.) 
for z in the i th age interval is 

1989 1989 

h( i )  = c cat/ c N*(i , t ) :  
t=1980 t=1980 

where Cit cases are first diagnosed in the SEER Registry in 
the age interval i in year t and N*(i ,  t )  is the corresponding 
number at risk of a first cancer in the SEER population. SC(z) 
is then computed by assuming &(z) is piecewise constant on 
the age intervals. We estimate N* (i, t )  iteratively by first es- 
timating a( i )  with N* (i, t )  = N ( i ,  t )  and then repeating the 
calculation one time with " ( 2 ,  t )  = Sc(5i - 2.5)N(i, t ) .  

We estimate S(d; z) by assuming the corresponding haz- 
ard X i j  is constant on 1-year time intervals following cancer 
diagnosis. Here X i j  is the hazard of death in year i follow- 
ing diagnosis of cancer for individuals diagnosed at age z in 
the age interval j. Five-year age intervals (j) were used so 
that we are in fact estimating a set of survival curves, one 
for each age group. The hazard X i j  is estimated as X i j  = 
-ln{l - Di j / (R i j  - 0.5L2j)}, where Di, cases die in the i th 
year following cancer diagnosis among those who were in age 
interval j at the time of diagnosis and where Rij and Lij are, 
respectively, the corresponding number at risk at the begin- 
ning of interval i and the number who are lost to follow-up in 
this interval. 

When the hazard functions pi (z) ,  h(z) ,  and i ( a  - z;z) 
are constant on the interval [ g l ,  9 2 ) ,  * ~ ~ ~ ( 9 1 , 9 2 ,  a ,  s )  can be 
integrated analytically as 

Assume that p2(z ) ,  h(z), and X(a - z; z) are piecewise con- 
stant functions, namely, pi(z) = pij for aj < z < a3+i, 
j = 1 , .  . . ,nu, &(z) = 8j for bj 5 x < bj+l ,  j = I , .  . . , n b ,  and 
i ( a  - 2;  z) = i k j  for d j  5 Ic < d + l ,  ek 5 a - z < ek+i, 3 = 
1,. . . , n d ,  k = 1,. . . , n,. Then we calculate * T R M ( C ~ ,  c2, a ,  s) 
by breaking the interval [cl ,  c2) into subintervals [gm,  gm+l ) ,  
m = 1, . . . , ng such that pi(%), &(z), and X(a - z; z) are con- 
stant on [gm,gm+i): 

+TRM(ci, ~ 2 , a ,  = ~2=1 + T R M ( s ~ , s ~ + I ,  a,sfl 

where (91,. . . , gn,+l} is the ordered set with elements {z : 
c1 5 z 5 c2 and (z =c1 o r z  = c2 or z E { q , .  . . ,an, ,bi , .  . ., 
b n b , d l , .  . . , d n d }  or u - 1~ E {e l , .  . . ,en,})}.  

Similarly, 

EiTRM(a, L )  = C t T R M ( i  - L ,  i ,  i, s ) ~ ( i ,  s ) / ~ ( + ,  s) 

a 

i=l 

m=l k=l 

*TRM ( g j k  > g j (  k+l) > 3 ,  s)) . 

We use the delta method (Rm, 1975, pp. 385-389) to esti- 
mate covariances such as those being summed in the above 
equations. 

A i l , .  . . , A n e l , .  . . , X i n d ,  
. . . , Anend are assumed independent and have estimated vari- 
ances g r ( h j )  = ( C C j t ) / ( C N * ( j , t ) ) 2  and g r ( X k j )  = Dkj/ 
( R k j  - 0.5Lkj - Dkj)2.  The quantities C Cj, and Dkj are as- 
sumed Poisson and var(ikj) is estimated by the delta method. 
The calculation of v%r(&j) ignores the small component of 
variation that arises from adjusting N ( i ,  t )  to remove persons 
with previous cancer diagnoses. 

Also, by the delta method, 

The hazard estimators hi , .  . . , 

cov(*TRM(g11,.'?12, a17 S),irTRM(g21,922,a2,s)) 
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for j > i*, 

for j # j * ,  




